Secondary structure provides a template for the folding of nearby polypeptides.

نویسندگان

  • Tomoshi Kameda
  • Shoji Takada
چکیده

Although protein structures are primarily encoded by their sequences, they are also critically dependent on environmental factors such as solvents and interactions with other molecules. Here we investigate how the folding-energy landscape of a short peptide is altered by interactions with another peptide, by performing atomistic replica-exchange molecular dynamics simulations of polyalanines in various environments. We analyzed the free-energy landscapes of Ala7 and Ala8 in isolation, near an alpha-helix template, and near a beta-strand template. The isolated Ala7 and Ala8 at 270 K were mainly in polyproline II helix conformations and in equilibrium between the alpha-helix and polyproline II helix, respectively, in harmony with the experiment. Interestingly, we found remarkably strong secondary-structure "templating"; namely, the alpha-helix template enhanced alpha-helix conformation and the beta-strand template induced beta-strand conformation in the simulated Ala8. The alpha-helix template lowered the nearby dielectric constant, which strengthened hydrogen bonds in the simulated Ala8, leading to alpha-helix stabilization. The beta-strand template provided hydrogen bond positions to the simulated Ala8, sharply inducing beta-strand structure. With or without templates, the energy landscape of Ala8 is always funnel-like and centered at the alpha-helix conformation, whereas entropic contribution disfavors the alpha-helix, leading to subtle competition. Secondary-structure templating may play a critical role in protein conformation dynamics in the cellular environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relation Between RNA Sequences, Structures, and Shapes via Variation Networks

Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...

متن کامل

Developmental Changes of the Notochord and its Inductive Effects on the Adjacent Embryonic Germ Layers with Regard to the Role of Glycoconjugates

Notochord is an axial structure derived of embryonic mesoderm and in addition to structural supporting role in inducing nearby germinal layers, it has a basic role in formation of organs such as vertebral column, axial vessels, neural tube and primitive gut. This organ undergoes essential changes during the development process. First, arises from the primitive node and terms notochordal process...

متن کامل

Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations

The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...

متن کامل

Determine folding mechanism of Lali structure, northern Dezful, Zagros, Iran

     Lali sub-surface structure, with a NW-SE Zagros trending is located in Dezful Embayment. To determine the folding mechanism, structural geometric parameters including limbs dip, amplitude, wavelength, and crestal length were determined in four stages during deformation. In order to investigate the lateral folding mechanism, these geometric parameters were analyzed in three parts in the Lal...

متن کامل

Physicochemical Position-Dependent Properties in the Protein Secondary Structures

Background: Establishing theories for designing arbitrary protein structures is complicated and depends on understanding the principles for protein folding, which is affected by applied features. Computer algorithms can reach high precision and stability in computationally designing enzymes and binders by applying informative features obtained from natural structures. Methods: In this study, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 47  شماره 

صفحات  -

تاریخ انتشار 2006